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A method is presented for the numerical analysis of the aerodynamic Characteristics 
of a two-dimensional single-surface porous sail. In this analysis the authors apply a 
series of Jacobi polynomials to express the pressure distribution and chordwise 
shape, considering carefully leading-edge conditions. It is found that the aero- 
dynamic stability of a sail increases with increasing porosity. The effects of porosity 
on the value of the life coefficient and the position of the centre of pressure are shown 
in diagrams as functions of angle of attack and of excess length of membrane over 
the chord length. 

1. Introduction 
Single-surface flexible sails are used on yachts, sail-boards, hang gliders, motor 

gliders and various wind turbines owing to their low cost and light weight as well as 
simplicity of construction. Hence it is worthwhile to study their aerodynamic 
behaviour experimentally as well as theoretically. 

For a non-porous membrane, an analytical investigation of the characteristics of 
a sail has been the subject of a number of previous studies. Voelz (1950), Thwaites 
(1961) and Nielsen (1963) studied the two-dimensional incompressible inviscid flow 
past a sail utilizing thin-aerofoil theory assuming that the angle of attack 01 is small. 
Recently, Murai & Maruyama (1982) studied the same problem in more detail by 
taking into account the effects of an elastically supported trailing edge. 

For finite a, Vanden-Broeck (1982) developed a nonlinear computational method 
and Sneyd (1984) studied the influence of membrane extensibility on sail 
characteristics. 

However, very few experiments have been made on non-porous single-surface 
sails. Nielsen (1963) summarized some experimental results and showed that the lift 
curve slope, but not the lift itself, agrees with a linear theory for an excess length 
ratio smaller than 0.06 and the position of the centre of pressure is in good agreement 
with his theory for cambers less than 15%. Recently, another experimental study 
was done on a quasi two-dimensional, single-surface sail with small camber a t  small 
incidence by Newman & Low (1984). One of their conclusions is that near zero 
incidence the values of lift and tension of a sail lie between the conventional 
linearized theory and a modified theory proposed by them. 

The facts described above show that linearized theory is still useful for the 
evaluation of experimental data and the prediction of aerodynamic behaviour. 

One of the problems raised in the analytical studies by Thwaites and Nielsen was 
the question of the influences of porosity on the aerodynamic characteristics of a sail. 
To the knowledge of the authors only the pioneering work of Barakat (1968) studies 
a porous sail, although there are many studies of non-porous sails. He proposed a 
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method to calculate numerically the aerodynamic behaviour of porous sails by 
applying Jacobi polynomials. 

In this paper the authors have improved his method to achieve better accuracy by 
expressing the aerodynamic coefficients in a simpler form. The important 
aerodynamic behaviour associated with the influence of porosity on the stability of 
the sail, on the value of the lift coefficient and on the position of the centre of pressure 
are thus clarified. 

2. Basic equations 
As shown in figure 1,  the chordwise shape consists of a strip of sail stret8ched 

between the leading edge (X = - c ,  Y = 0) and the trailing edge (X = c ,  Y = 0). It is 
positioned in a uniform flow of speed U ,  which is inclined a t  an angle of attack LX to 
the X-axis. In inviscid flow, the membrane tension T is constant over the camber 
line, although it decreases slightly from the leading edge to the trailing edge in real 
flow owing to the skin friction. The pressure difference across the membrane is 

d2Y 
Ap = -T- 

d x 2  

because the slope of the sail is small. 

and the pressure difference is given by 
If the density of fluid is denoted by p,  the lift on the sail element dX is pUy(X)  dX 

AP = PUY(X), (2) 

where y ( X )  is the strength of the vortex sheet per unit length distributed in 
- c  < X < c ,  Y = 0, which represents the sail in linearized theory. 

The speed of through-flow due to the porosity of the sail may be taken to be 
proportional to Ap, and hence to y ( X ) .  Now we define a coefficient k in such a manner 
that the speed of through-flow in the Y-direction is ky(X). The inclination of the flow 
speed a t  the sail surface to the X-axis is (Y’ + ky(X)/ U ) ,  and this must be equal to the 
inclination of the flow speed which is the sum of the main flow speed and the speed 
induced by the vortex sheet, namely, 

I re 

Thus we have Thwaites’ equation : 

1 --J Y O d X ,  = ULX-UY-ky(X). 
2x -cxo-x (3) 

In this study, we assume that the sail has a constant porosity coefficient k along the 
camber line. 

Let us change the variables X ,  Y to normalized ones x, y defined by X = cx, 
Y = cy and put 

(4) 
P(X) - Y(X) Y(x) = - 
plF -7’ 



Y =  Y(x) 
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where p(x) is the normalized vortex distributions and !i' is a tension coefficient. Thus 
the normalized versions of (3) and (1) are 

Equation (6) is a singular integral equation with a kernel of Cauchy type, and the 
inclusion of porosity leads to a Fredholm integral equation of the second kind, 
whereas an integral equation of the first kind is encountered in the usual impermeable 
case. 

The length of the membrane is evaluated as follows: 

1 = r" (l+Y'"blx, 
J --c 

where Y' = dY/dX. For a small slope, the length l can be written in the form 

(8 )  
1 

1 = 2 c + -  Y2dx. 

For a real sail, an angle of attack u and an excess length ratio S = (1  - 2 c ) / 2 c  are given 
and the tension coefficient T is an unknown variable. But here we solve (6) and (7) 
for given values of a and !i', and compute 6 from (8). 

2 1 ,  

3. Solution of the basic equations 
Erdogan, Gupta & Cook (1973) showed that the explicit solution of (6) is 

where cot ( p x )  = 2k.  (10) 

The exponent /3, which characterizes the singularity a t  the leading edge, depends on 
the porosity k as shown in (lo), and diminishes with an increase in porosity. As the 



466 S. Murata and S.  Tanaka 

porosity decreases to zero, a square-root singularity (/3 = $) at the leading edge, 
which is a feature of the impermeable sail, appears. The exponent g must be equal 
to 0, 1 or - 1.  But for = - 1, the solution does not satisfy the Kutta condition. The 
solution for CT = 1 has no singularity at the leading edge and the trailing edge, and 
this solution, which represents the flow at zero incidence, exists only when the 
following condition is satisfied : 

= 0. 
P( t )d t  s (1 - t )P(  1 + t ) l - P  

The solution (9) for r = 0 can be applied in every case when the Kutta condition 
is satisfied. Barakat (1968) applied this type of solution and expressed the vortex 
distribution as follows : 

where P$-@)(x) is Jacobi polynomial. 
Combining the solution (9) for g = 1 with that for CT = 0, Nielsen (1963) expressed 

the vortex distribution over the non-porous sail (k = 0) by utilizing a Glauert series 
in the form m 

~ ( x )  = Ccot (@)+ C A ,  sin (no), (13) 
n=l  

where = case. 
In (13), the vortex dist,ribution 

y(z )  = c cot ($9) 

is the solution (9) when Ic = 0, F(xo)  = C and u = 0, which is the vortex distribution 
on a flat plate with an angle of attack C. For C = 0, (13) becomes 

m 
y(x) = C A,  sin (no), 

which expresses the vortex distribution at zero incidence. The Glauert series (13) 
expresses the part of the vortex distribution with leading-edge singularity and the 
non-singular part separately. The employment of this series makes it possible to 
express the aerodynamic coefficients of a sail by only the first three coefficients of 
(13), and makes the calculation accuracy better. 

n=l  

For a porous sail, the same type of solution (9) as Nielsen’s can be used: 

where C is determined from the following relation: 

Let us express the slope of the sail y‘ in a series of Jacobi polynomials PL-p,fl-l)(x), 
which has the weight function (1 - x)-P( 1 + x)”-’, as follows : 
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When C = A , - a ,  that is when 
m 

F(s) -C = C AnPL-Bpp-l)(~) 
n=l 

the condition (15) is satisfied. Thus the constant C is determined. Substituting (16) 
into (14) we obtain 

In the above procedure, we utilize the following formulae (Gradshteyn & Ryzhik 

1 -x 

The first term in the right-hand side of (17) represents the vortex distribution on a 
porous flat plate a t  an angle of attack a - A , .  

Substitution of (16) and (17)  into (7)  and utilization of the following formula: 

lead to  the final form of the equation, namely 

1 ffl 

-T c n A , P ; p y r )  = 
n=1 (k2+0.25) sin (pn) 

- ( 1 - x)B( 1 + z ) 1 - B  

n-1 2 
By making use of the relation 

p(B?l-B)(z) n-1 = ( -  l ) ” p p u y  -x) (22) 

we can express (21) by only one kind of Jacobi polynomial, PiB~,81:-fl(x). 

sail lie on the X-axis, we have 
Because of the geometrical constraint that  the leading and the trailing edges of the 

y(1) = y(-1) = 0. 

Taking account of (16), we obtain the following relations. 

The procedure for the numerical calculation of (21) is as follows. In  order to 
minimize the numerical error, the zero points of Jacobi polynomials P$P-’)(x) are 
selected as matching points, where (21) is satisfied. The first approximate coordinates 
of the zero points of the Jacobi polynomials are given by 

X S , l  = cos{2~-1+4sn}. 4(m + 1) (24) 
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In order to calculate more accurately the coordinates of the zero points, Newton's 
successive method is adopted, namely 

(25) 

The derivative d{P$l-n(x)}/dz is evaluated from 

(26) 

The Jacobi polynomial P$ '-p)(x) is calculated from the recurrence formulae. 
Once the coefficients A,, have been calculated for a specified k and T from (21), we 

can utilize (16) and (17) to  determine the sail shape and the vortex distribution on 
the sail. 

4. Eigenvalue problem 
Nielsen discussed the eigenvalue problem a t  zero incidence and reached the 

conclusion that the eigenvectors are partitioned into two independent sets : one is an 
even function and the other is an odd function. Then he discussed their characteristics 
in detail. When we consider the case of zero incidence and set a-A, = 0 in (21), we 
obtain the same results as Nielsen's. But the odd set is physically meaningless since 
components of eigenvectors A ,  are determined from a because A,( = a) is not zero. 
I n  order to obtain physically meaningful eigenvectors, we have to  set a = 0 in (21), 
which then becomes 

where B and D are matrices with components b, and d ,  respectively and A is a 
vector with components A,,. In order to  estimate eigenvalues and eigenvectors, we 
employed the following procedure. Calculating the inverse matrix 8-' by Gauss's 
elimination method and multiplying both sides of (27) by B-', we can obtain the 
eigenvalues and the eigenvectors by the power method and the Hotteling method. 

When the numbers m of matching points are 7 ,  9, 11 and 30 the values of 
maximum tension eigenvalues are 1.72748, 1.72746, 1.72745 and 1.72745, 
respectively. This result shows that can be estimated with a satisfactory accuracy 
when we put m = 1 1 .  Therefore all calculations in this paper were performed by 
setting m = 11.  

For the non-porous sail, the tension eigenvalues calculated from the present 
method by setting a-A, = 0 are 

= 1.7275, = 0.7260, = 0.4634, 



Aerodynamic characteristics of a porous sail 469 

0 0.25 0.50 0.75 1 .oo 

FIGURE 2.  Maximum tension eigenvalues. 

k 

which coincide with Nielsen’s results with an error of 0.02%, while the tension 
eigenvalues given by Barakat are 

= 1.7241, p2 = 0.7262, = 0.3396. 

There is a large difference in the third eigenvalue 
Barakat’s. 

Putting a = 0, we obtain another meaningful eigenvalue 

between the present method and 

Since a is not zero when T! is 0.7260, this eigenvalue is physically meaningless. 

T!. = 0.5563 

which coincides with Murai & Maruyama’s result with a satisfactory accuracy. 
calculated from the double QR 

method are shown in figure 2. They coincide graphically with the values calculated 
by Barakat for k < 0.4. As an example, for the value of when k is 0.4 Barakat 
obtained 0.5797, while the present authors obtained 0.5741. From figure 2, it is seen 
that the eigenvalue diminishes with an increase in k. From the viewpoint of the 
value of q, which is the criterion of stability when a sail with constant tension is 
examined, the stability increases with rising porosity. For k 2 0.2753, all the values 
of !Tn(n $; 1) are complex numbers. 

For a porous sail, the maximum eigenvalues 

5. Sail characteristics 
Since the basic equation (21) is of the linear type, coefficients A ,  are proportional 

to  the angle of attack a. It is clear that  the slope y’ is proportional t o  A ,  from (16) 
and the excess length ratio d is also proportional to A: from (8). Therefore, y is 
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FIGURE 3. Shapes of sail for various values of porosity. = 10. 

0 1 2 3 4 
T 

FIGURE 4. Excess length ratio (k = 0). 

proportional to d. When lc = 0 and T = 10 the values of Y/2c& calculated from the 
present method coincide with Nielsen’s within an error of 0.02 YO, but are different 
by 2 YO from Barakat’s values. For various values of porosity k, the shapes of a wing 
sail for 

In  figures 4 and 5 ,  the values of &/a calculated from (8) are plotted versus the 
tension coefficient T for various values of k. When $/a (&/a),, various modes of 
sail shape appear as shown in figure 6. I n  order to illustrate the relation between 
($/a), and porosity k, figure 7 has been prepared. From this figure, i t  is clear that 
an increase in porosity increases (&/a),, which is the criterion of stability when 
‘looseness’ or excess length is considered. Figure 8 shows the relation between $/a 
and T for various values of k( 2 0.3). 

In the usual manner of linearized theory, the lift coefficient C, can be obtained 
from integration of the pressure difference 3/ (x) ,  and the moment coefficient CM is 

= 10 are shown in figure 3. 
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T 
FIGURE 5. Excess length ratio. (a) k = 0.1 ; ( b )  k = 0.2. 

obtained by integrating the product of ~ ( x )  and the coordinate x over the chord. 
Integration of the first term in the right-hand side of (17) yields 

which give the lift and the moment coefficients for a porous flat plate when we put 
A,, = 0. 
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FIGURE 6. Various shapes of sail in the supercritical region : k = 0.2, &/a = 3. 

To prepare the necessary formulae to integrate the second term in the right-hand 
side of (17), we utilize the orthogonal characteristics of Jacobi polynomials and 
consider the relations 

Thus we obtain 
p p - B ) ( x )  = 1, p y 3 1 - P ) ( X )  = x. (30) 

I 3 sin (Pn) (n = 1). I P(P+l)P-P)(l-P)'IE 

(32) 

Making use of the above formulae, we find that 

(33) 

Then the position of the centre of pressure is given by 

c, = t(1 +C,/C,). (35) 
The series of Jacobi polynomials (16) used to show the slope of the sail make it 
possible to express the lift and the moment coefficients and the position of the centre 
of pressure by their first three coefficients as shown in (33)-(35) in the same manner 
as in the Glauert's series employed by Nielsen. 
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FIQURE 7 .  Critical excess length. 
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FIGURE 8. Excess length ratio (k 3 0.3). 

ii 

From figure 9 it is seen that an increase in porosity k and a decrease in excess 
length ratio &/a lead to a decrease in the lift coefficient slope CJa. Figure 10 shows 
the graph of C, against &/a for various values of k. The centre of pressure 
approaches the trailing edge when the porosity of the sail increases. In figures 9 and 
10, solid lines show the values when only one model of the sail shape appears, arid 
dotted lines show the values a t  a tension coefficient larger than the maximum tension 
eigenvalue for various modes. 
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FIGURE 9. Lift characteristics. 
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FIGURE 10. Centre of pressure. 

Gila 

6. Conclusions 
In the present paper the authors have improved Barakat’s method of numerical 

calculation of the aerodynamic coefficients and thereby improved the calculation 
accuracy. The results of a numerical analysis show that good stability characteristics 
from the viewpoints of the value of maximum tension eigenvalue and critical excess 
length ratio, can be obtained when the porosity of the membrane is high. With an 
increase in porosity and a decrease in excess length, the slope of the lift coefficient 
curve decreases as shown in figure 9. The centre of pressure approaches the trailing 
edge when the porosity and the excess length increase as shown in figure 10. 
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